Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(6): e16198, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37342959

RESUMO

PREMISE: Deceptive pollination, a fascinating mechanism that independently originated in several plant families for benefiting from pollinators without providing any reward, is particularly widespread among orchids. Pollination efficiency is crucial in orchids due to the aggregated pollen in a pollinarium, which facilitates pollen transfer and promotes cross-pollination as pollinators leave after being deceived. METHODS: In this study, we compiled data on reproductive ecology from five orchid species with different pollination strategies: three deceptive-strategy species (shelter imitation, food deception, sexual deception), one nectar-rewarding species, and one shelter-imitation but spontaneously selfing species. We aimed to compare the reproductive success (female fitness: fruit set; male fitness: pollinarium removal) and pollination efficiency of species representing these strategies. We also investigated pollen limitation and inbreeding depression among the pollination strategies. RESULTS: Male and female fitness were strongly correlated in all species but the spontaneously selfing species, which had high fruit set and low pollinarium removal. As expected, pollination efficiency was highest for the rewarding species and the sexually deceptive species. Rewarding species had no pollen limitation but did have high cumulative inbreeding depression; deceptive species had high pollen limitation and moderate inbreeding depression; and spontaneously selfing species did not have pollen limitation or inbreeding depression. CONCLUSIONS: Pollinator response to deception is critical to maintain reproductive success and avoid inbreeding in orchid species with non-rewarding pollination strategies. Our findings contribute to a better understanding of the trade-offs associated with different pollination strategies in orchids and highlight the importance of pollination efficiency in orchids due to the pollinarium.


Assuntos
Orchidaceae , Polinização , Polinização/fisiologia , Orchidaceae/fisiologia , Reprodução , Pólen/fisiologia , Néctar de Plantas , Flores/fisiologia
2.
Ann Bot ; 130(6): 835-848, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36130093

RESUMO

BACKGROUND AND AIMS: The loss of natural habitats may strongly affect the fitness of plants that depend on animals for reproduction. However, very little is known regarding the differential effects of habitat disturbance on the distinct phases of the reproductive cycle of plants, especially in non-rewarding species. METHODS: We assessed the effects of habitat disturbance on the entire reproductive cycle of Arum pictum ssp. sagittifolium, a species with deceptive pollination that is endemic to the western Mediterranean Basin. For this, we performed hand-pollination and bagging experiments, evaluated the role of pollinators and dispersers on reproduction, and estimated seedling recruitment in three natural and three disturbed populations (according to their surrounding natural habitat) in Mallorca Island. KEY RESULTS: Pollinators were sphaerocerid flies (mainly Coproica, with ~50 % of visits) and staphylinid beetles, and were required for sexual reproduction. Habitat disturbance differently affected the reproductive phases of A. pictum ssp. sagittifolium. Habitat disturbance had a positive effect on Shannon pollinator diversity (but not on pollinator richness), and total pollinator and Coproica abundance were three times higher in disturbed habitats, where overall seed production was also ~30 % higher in natural habitats. Seed production increased with Coproica abundance, but only in natural habitats. Seed dispersers of A. pictum ssp. sagittifolium were birds, mainly Sylvia atricapilla. Although habitat disturbance did not influence disperser diversity or abundance, the majority of seedlings appeared under adult plants and in natural habitats. CONCLUSIONS: Overall recruitment was higher in natural habitats, but this effect could have been masked by only assessing pollinator and disperser numbers, as processes related to the quality of these interactions might be influencing fitness. Our study highlights the need to study different reproductive phases and their multiple components and processes to properly understand the effects of habitat disturbance on the regeneration of plant populations.


Assuntos
Arum , Polinização , Animais , Plântula , Ecossistema , Reprodução , Flores
3.
Ecol Appl ; 32(6): e2634, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403772

RESUMO

Loss of habitats and native species, introduction of invasive species, and changing climate regimes lead to the homogenization of landscapes and communities, affecting the availability of habitats and resources for economically important guilds, such as pollinators. Understanding how pollinators and their interactions vary along resource diversity gradients at different scales may help to determine their adaptability to the current diversity loss related to global change. We used data on 20 plant-pollinator communities along gradients of flower richness (local diversity) and landscape heterogeneity (landscape diversity) to understand how the diversity of resources at local and landscape scales affected (1) wild pollinator abundance and richness (accounting also for honey bee abundance), (2) the structure of plant-pollinator networks, (3) the proportion of actively selected interactions (those not occurring by neutral processes), and (4) pollinator diet breadth and species' specialization in networks. Wild pollinator abundance was higher overall in flower-rich and heterogeneous habitats, while wild pollinator richness increased with flower richness (more strongly for beetles and wild bees) and decreased with honeybee abundance. Network specialization (H2 '), modularity, and functional complementarity were all positively related to floral richness and landscape heterogeneity, indicating niche segregation as the diversity of resources increases at both scales. Flower richness also increased the proportion of actively selected interactions (especially for wild bees and flies), whereas landscape heterogeneity had a weak negative effect on this variable. Overall, network-level metrics responded to larger landscape scales than pollinator-level metrics did. Higher floral richness resulted in a wider taxonomic and functional diet for all the study guilds, while functional diet increased mainly for beetles. Despite this, specialization in networks (d') increased with flower richness for all the study guilds, because pollinator species fed on a narrower subset of plants as communities became richer in species. Our study indicates that pollinators are able to adapt their diet to resource changes at local and landscape scales. However, resource homogenization might lead to poor and generalist pollinator communities, where functionally specialized interactions are lost. This study highlights the importance of including different scales to understand the effects of global change on pollination service through changes in resource diversity.


Assuntos
Besouros , Polinização , Animais , Abelhas , Dieta , Ecossistema , Flores , Plantas
4.
Plant Sci ; 307: 110890, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902851

RESUMO

Mechanisms that allow plants to survive and reproduce after herbivory are considered to play a key role in plant evolution. In this study, we evaluated how tolerance varies in species with different historic exposure to herbivores considering ontogeny. We exposed the range-restricted species Medicago citrina and its closely related and widespread species M. arborea to one and two herbivory simulations (80 % aerial biomass loss). Physiological and growth parameters related to tolerance capacity were assessed to evaluate constitutive values (without herbivory) and induced tolerance after damage. Constitutive traits were not always related to greater tolerance, and each species compensated for herbivory through different traits. Herbivory damage only led to mortality in M. citrina; adults exhibited root biomass loss and increased oxidative stress after damage, but also compensated aerial biomass. Despite seedlings showed a lower death percentage than adults after herbivory in M. citrina, they showed less capacity to recover control values than adults. Moderate tolerance to M. arborea herbivory and low tolerance to M. citrina is found. Thus, although the constitutive characteristics are maintained in the lineage, the tolerance of plants decreases in M. citrina. That represents how plants respond to the lack of pressure from herbivores in their habitat.


Assuntos
Variação Genética , Herbivoria/genética , Herbivoria/imunologia , Medicago/crescimento & desenvolvimento , Medicago/genética , Medicago/imunologia , Imunidade Vegetal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Genótipo , Espanha
5.
PLoS One ; 15(9): e0238222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936803

RESUMO

The expansion of agriculture is a major driver of biodiversity loss worldwide, through changes generated in the landscape. Despite this, very little is still known about the complex relationships between landscape composition and heterogeneity and plant taxonomical and functional diversity in Mediterranean ecosystems that have been extensively managed during millennia. Although according to the Intermediate Disturbance Hypothesis (IDH) plant richness might peak at intermediate disturbance levels, functional diversity might increase with landscape heterogeneity and decrease with the intensity of disturbance. Here, we evaluated the associations of landscape composition (percentage of crops) and heterogeneity (diversity of land-cover classes) with plant taxonomical diversity (richness, diversity, evenness), local contribution to beta diversity, and functional diversity (functional richness, evenness, divergence and dispersion) in 20 wild Olea europaea communities appearing within agricultural landscapes of Mallorca Island (Western Mediterranean Basin). In accordance with the IDH, we found that overall plant richness peaked at intermediate levels of crops in the landscape, whereas plant evenness showed the opposite pattern, because richness peak was mainly related to an increase in scarce ruderal species. Plant communities surrounded by very heterogeneous landscapes were those contributing the most to beta diversity and showing the highest functional richness and evenness, likely because diverse landscapes favour the colonization of new species and traits into the communities. In addition, landscape heterogeneity decreased functional divergence (i.e., increased trait overlap of dominant species) which may enhance community resilience against disturbances through a higher functional redundancy. However, a large extent of agriculture in the landscape might reduce such resilience, as this disturbance acted as an environmental filter that decreased functional dispersion (i.e, remaining species shared similar traits). Overall, our study highlights the importance of considering several indices of taxonomical and functional diversity to deeply understand the complex relationships between ecosystems functions and landscape context.


Assuntos
Agricultura/métodos , Biodiversidade , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental/métodos , Plantas/classificação , Humanos , Região do Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...